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Solving equations (3) and (&) for F(s) end &(s) gives the Laplace
transform of y(x) and 6(x), respectively, as :

(s3 + 68 )tp + (82 + 8)¥3 + poy - po *fo'(2; - 0) - 6'(3y + 0)]

y(s) = a(s)

] &2 + 5)e-szl[y'”k7'l - 0) - Y'”(Zl + O)J -
a(s)

and
§(s) = sho, - y8¥p = 7¥3 = Oa+ 76BN (15 - 0) - 7' (3 + O]
8l = a(s)
-s1
+ (cx. - s)"')e i ll._.el(zl - 0) - 6'(7.1 + O):I (6)
a(s)
where

Q(S)=B6+SS)+"GB2+7B—Q§

Golend and Iuke (reference L) showed that y(x) and 6(x) could be
written as a converging series by expending the transforms (5) and (6)
in terms of symmetric polynomials of the squares of the roots of a(s)
and applying the inverse transform. A discussion of this expansion is
given in section 4 of appendix A where it is shown that 1/a(s) can be
written as

(-]
1 1 Tn (
Zss =76 Z on 7)
d 8 n=OS
where
To =1
Tl = "8
T, =8 + a
T =-83 - ad -By
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For n2 3,
= <BTney + alpp + (@B - BY)Tng (8)
When the series e ion of 1/q(s), equation ('Z), is substituted
into equations (5) and (6) the transforms y?s) end 6(s) becomes sums of-

infinite series with terms of two dlstinct types; that is, terms of types
A
st

Be °%0
g

vhere m 18 a poslitive Integer.

The inverse Laplace transform of :—n-l (see pair no. 3, p. 295, of

reference 9) for x>0 18

l
Al - (9)
{ m - 1 .
Be~ %o
end the inverse Laplace transform of =——— (see pair no. 63, p. 298,

_ gt
of reference 9) for x >x, >0 1s

1 |Be™%%|  B(x - x)™*
i esm}= =T (10)
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FLUITER COF A UNIFORM WING WITH AN ARBITRARILY
PTACED MASS ACCORDING TO A DIFFERENTTIAL-
EQUATTON ANALYSTS AND A COMPARISON
WITH EXPERTMENT

By Harry L. Runyan and Charles E. Watkins

SUMMARY

-

A method 1s presented for the calculation of the flutter speed of =a
uniform wing carrying an arbitrarlly placed concentrated mass. The
method, an extension of recently published work by Goland and Luke,
involves the solution of -the differemtial equations of motion of the
wing at flutter speed and therefore doss not require the assumption of
specific normal modes of vibratiop. The order of the flutter determi-
nant to be solved by this method depends upon the order of the system
of differential equations and not upon the number of modes of vibration
Involved.

The differential equations are solved by operational methods and
a brief discussion of operational methods as applied to boundary-value
problems is included in one of two appendixes. A comparison is made
with experiment for & wing with & large eccentricaelly mounted welght
and good agreement is obtained. Sample calculations are presented to
illustrate the method; and curves of emplitudes of displacement, torque,
and shear for a particular case are compared with corresponding curves
computed from the flrst uncoupled normal modes.

For convenience, the method employs two-dimensional alr forces
and could be extended to apply to uniform wings with any number of
arbitrarily placed concentrated weights, one of which might be considered
ag & fuselage. The location of such masses as engines, fuel tanks, and
landing-gear installetions might be used to advantage in increasing the
flutter speed of a given wing.

INTROTUCTION

The common procedures in flutter analysis of an alrplane wing
involve mamy simplifying assuwnptions. In particular the degrees of
freedom of the wing are usually determined by choosing the first few
normal modes of the structure, and the wing motion at flutter is then
described in terms of these chosen modes. This approach of employing
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prescribed modes 1s often adapted to"the Rayleigh type analyﬂis of
vibration and may be referred to as Rayleigh type analysis. In
specific calculatlons with this method the amount—of work requlred is
proportional o the mumber of normal modes involved. In particular, the
order of the flutter determinant that must be solved depends directly
upon the number of modes involved. For simple wings, without concen-
trated masses, the Raylelgh type analysis uwsuvally ylelds satisfactory
resulte with not more than two or three normel modes. However, if—the
wing carries concentrated masses, such as engine, fusl tank, or lending-
gear installations, so many normel modes may be required to cbtain satls-
factory resulte thet the Rayleilgh method may not be the most—feaslible
method.

In cases where many degrees of Freedam are involved the most loglceal
. procedure would be to treat the system of differentlal equations of
motion of the wing rather than to choose specific modes. This method is
in general very difficult and tedious to carry through, although it has
the adventege that the order of the flutter determinant that muast be
solved depends only upon the order of the system of differential equatioms
end not upon the number of modes of vibration -involved.

As early as 1929 Kissner (refergnce 1) used the differentisal
equation approach to formulate the problem in the form ofan Integro-
differential equation for a wing of general plen form. XKiissner set up
gome particular examples end suggested a method of solutlion by a process
of iteration. This method was not followed up wntil during the war
when some related work was undertaken 1n Germany but not finished.
Wielandt (reference 2) has recently made contributions to the treatment
of noneself-adjoint differential equations by iterative processes. In
the light of these contributions perhaps the problem of flutter analysis
as proposed by Kiisener warrants further investigation.

Recently, Goland (reference 3) applied the differential-equation
method to a uniform cantilever wing and was able to carry out the
solution of the flutter problem by straightforward methods. In refer-
ence 4 Goland and Luke extended the solution of the problem of +the
uniform wing to include a uniform wing carrylng a fuselage at the
semlspan and concentrated welghts at the tips. Goland and Luke made
use of the ILaplace treansform to solve the differential equations by
operational methods for both the symstric and gntisymetric itypes of
flutter. In both references 3 and &, the objective wes to compare
Tlutter speeds end certain flubber parameters for specific uniform
wings calculated by the differential-equeticns method wilith the same
quantities calculated by the Reyleligh method when only the fundamental
bending and torsion modes were used in the calculations, Falrly close
agreement between results calculated by the two methodsd were obtained
in both references 3 and 4. No comparison with experiment, however,
wag made In elther case. ' '

The results of a systematic series of flutter tests made to
determine the effect of concentrated weights and concentrated weight
positions on She flutter speed of a uniform cantilever wing are reported
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in reference 5. After these experiments were finished, an attempt was made
to compare the results with a theoretical analysis by the Reyleigh method.
In cases where the mass of the welght was of the same order as that of the
wing and placed so that the distance between its center of gravity and the
elastic axis of the wing was a considerable fraction of the wing chord,
however, several normal modes would have to be employed and there was no
way of knowing in advance Just what number should be used. Because of
this difficulty and because the wing was a wniform wing, the most extrems
case was chosen from reference 5 and investigated by the differentlal-
equations method by followlng an extended procedure of Goland end Luks.
The purpose of this paper is to report the results of this investigation.

The paper consists of the main text and two appendixes. In the
main text the differential-equation method is set up for any wmiform
cantilever wing with an arbltrerily placed concentrated welght end the
solution, based on an extension of the mothod used by Goland and Iuke, is
developed. Applicatlion is then made to a particular wing-welght system
used in reference 5, and comparlson with experimentel results is glven.
The mass of the welght (weigh'b labeled 7a in reference 5) was sabout
92 percent of the mass of the wing end at sach spenwise welght position
the weight was placed so that 1te center of gravity was sbout O.41 chord
forward of the elastlc exls of the wing. (It mey be mentioned for the
sake of camparison that in the numerical example treated in reference L >
the mass of the welght was only 39 percent of the mass of the wing and
placed O.1 chord behind the elastic axls of the wing.) The geametric
aspsct ratlio of the wing was 6, which was considered large enough to
warrant the use of two~dimensional ailr Fforces wlthoub aspect-ratio
corrections for oscillating instability (not necessarily so for the
divergent type of instability (see reference 6)). One other simpli-
Tication was the omission of terms due to structural demping. The
computed results agree remarkably well wlth experimental results,
particularly in regard to trends.

In appendix A the method used by Goland and Luke, which includes
the derivation of the differentisl eguations, for a wing carrying a tip
welght 1s outlined and extended to a wing carrying an arbitrarily placed
welght. A somewhat general but brief discussion of operatiomel methods
of solving boundary-valus problems is included and illustrated with a
gimple example for readers who might be interested but are not familiar
wlth the operational. epproache.

In appendlx B the derivation of the flubtbter determinant is com~
Pleted and a method of solving the determinent is 1llustrated by a
detailed calculation of the flutter speed for the wing and cne wsight
position of the wing-weight combination discussed in the test. As &
final toplc in thls appendlx the solubtion obtalned for the flutter
determinent is used with the solubtions of the differential equations to
calculate the amplitudes and phase angles of the deflection curves of
the wing-welght system at flutter speed.

4
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SYMBOLS

(The syrbols are given in terms of a consistent set of units that
are convenient for the computations 1n this paper. They can be converted
to eny desired set of unite by proper attention to the dimensions

involved.)

a

€1

&2

L

nondimensicnal distance of elastic axis from midchord
measured in half-chords, positive for positlons of
elastic axis behind midchord

wing half-chord, feet

chordwlse distance ofwing center of gravity from
elastic axis, positive for center of gravity behind
elastlic axis, feet

chordwise distance of weight center of gravity from
elastlc axis, positive for center of gravity behind
elagtlc axis, feet

gravitational constant, feet per second per second

mess mament of inertia of uniform wing per unit—of -
spanwlse length, referred to wing elastic axis,

pound- s=xecond2 (MKl‘Q)

mass mament of inertia of weight referred to wing
elastlc axis, foot-poumnd-second

radius of gyration of wing sections about wing elastic
axis, feet

radius of gyration of welght about elastlc axis, feet
reduced-frequency parameter ( %—D')

aerodynamic 1lift force per wmit of spanwise length

Ly + 4Ly' = 20bPLy

Ly + ilg'

1

41

- :tp'b3[La - Lh<% + a):’

gemispan of wing, feet

location of welght measured from wing root, feet
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Ly, L s My s Mo, serodynamic coefficients as tabuleted in reference T

M aerodynamic moment per unit of spanwlse length taken
about elastic axis

My + iMy' = :tp'b3Edh - Lh<%‘ + a)]
. 2

Mg + 1Mp' =:tpbu[Ma-La<-é]=ﬂ-a)-Mh%+a> +Lh<-;-‘+a>}

w wolght of wing model, pounds

m mags of wing per unit length

Wy welght of concentrated weight, pounds

N transverse shear force in wing at station =x

T torsional moment in wing at station =x

Rq,Rp,R3 roé-bs of cubic equatiop

8 operator used in Laplace transformation

t time coordinate )

T, sum of all symmetric polynomial functioms in R, Ro, R3
which are of degree n

Vo experimental flutter speed for wing without welght,
feot per second

v flutter speed, feet per second

{Tn reduced flutter speed

x spenwise coordinate mesasured from wing root

Y(x,t) general mode shepe function in bending

y(x) mode shepe function in bending after assumption of
harmonic motion ’\yl(x) + iyg(x))

EL, flexural rigldity of uniform wing, pound-feet’

GJ torsional rigidity of wniform wing, pomd.—fee'b2



6 NACA TN No. 1848

q:im'l' + !
AT Iy + iy

B =%<mel+l.e+ﬂ,e'>
7 =g 2)

8=§§I+M€+1M9'>

K mass ratio <?2n )
o) air density, slugs per cublc foot
A camplex value of determlnant
by value of A vwhen real and imaginary parts are equal
Ofx,t) general mode shape finction Iin torsion
e(x) mode shape function in torsion after assumption of
harmonic motion (92(::) + :7.63(::))
w circular frequency at flutter, radlans per second
kg frequency, cycles per second (-é“iﬁ)
ANATYSTS

. As mentioned in the Introduction the differential equations that
govern the motion of a uniform wing at flutter speed, as derived by
Goland in reference 3, and a method of solving the equations for a
uniform centilever wing cerrying an arbitrarily placed weight; based on
a method developed by Goland and Luke in reference 4, are discussed in
appendix A. This section, therefore, 1s devoted to a brief discussion
of the differential equations of motion of the wing, the boundary condi-
tions, solution of—the bowndary-vaelus problem by means of the Laplace
transform, end the solution of the flutter determinent.

The differentlal equations and boundary conditions that govern
the motion, at flutter speed, of a centilever wing of length 1 with
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a concentrated weight placed 1 units along the span from the root
section and eo unite forward of the elastic axle of the wing, as derived
in appendix A, are

717(x) - ay(x) - pe(x) =0 (1)
8''(x) + yy(x) + 80(x) =0 (2)
(&) y(0) =y'(0) =6(0) =0
(b)  EI,y''(1) = Eny'''(1) =age'(1) =0
() EI-b[y” "1 -0) - 7" (¥ o‘)] - Z—Wuﬁ[y(zl) + eg@(ll);l

@ o (- 0)- 6'(u + 0)]=HP[env(n2) + mP6 (1))

where

2

'§_1b<m+17+.ﬂ'¥'> _

2
%‘IEQEGJ."'IG+1LG'>

o}
|

B

i

7 = Sl 4y ¢ 1)

8=2—i<I+Me+iMa>

and where y(x) is the displacement of a chordwise elemsnt of the elastic
axis of the wing at span position x 'dus to bending; 6(x) is ‘the corre-
sponding displacement due to torsionj primes assoclated with ¥ end 6
indicate differentlation with respect to xj; EIp 1s the flexural rigidity

of the wing; GJ 1s the torsional rigldity of the wing; _gw is mass of the

welght; m is mass per unit length of wing; sand o is the clrcular
frequency of bending end torsion at flutter. In condition (c) the
notation y'''(i7 - 0) indicates that y'''(x) is to have the velues that
1t approaches as x —»17 from the Inboard slde of the weight

end y'''(17 + O) indicates that y'''(x) is to have the value that it
approaches as xX-—»17 from the outboard silde of the weight. Similar
meanings are given to 6'(11 - 0) and ©'(1y + 0).
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The quantities Ly + ily', Ig + ilg', Mo + M. ', and Mg + iMp'

can be written in terms of—tabulated quantitlies as follows:
o _ 2
I.y + iL.)7 = ntpb~Ly,
o+ ot = i~ 3+
n:p'b3[Mh Lh( s + a)]
2
Mg + 1Mp' "F’b[a' a(e*a) tha*“) Lh(2+a' J

In reference 7 the values of Iy, Ly, My, and M, are expressed in ‘teorms

of Theodorsen's F end ¢ Punctions of reference 8 and tabulated for
various values of the reduced speed Vv

1

The root conditions (a) and the boundary conditions (b), of the
boundary-value problem, are the usual conditlons that must be Imposed
upon the equatione of a vibrating cantilever beam (or wing). Condi-
tions (c) and (d) stipulate discontinuities of determineble megnitudes
in trensverse shearing force and torque, respectively.

Applying the Laplace transform (see appendix A)

o0

fo o-8%s(x) dx = F(s)

to equations (1) and (2) end making use of conditions (a), (c), and (d)

glves '

s%5(s) ~ s¥o - Y3 + e‘szl[y”'(ll -0) -y (L + 0)] - oj(s) - BB(s) =
(3)

and
528(s) - 07 + e‘szl{e'(zl -0) - 8%y + o):] + 86(s) + 77(s) = O (4)
where =

T =y''(0)

Y3 =y'"'"(0)

8, = 8'(0)
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and

Zccs Tnx2n+l N * Tnxen-l-ll' . z manms
0(x) = 081 —('a‘_n_fi)—" 7Yo _(2a+4)1 73§ (2n + 5)!
n=0 n=0 =0

o ~ * . 2nt5
'I‘nx2n+5 Tn(x - 21.)
“e1e) TEgrt| el o) - et o) e ) ey
n=0 _ n=0

Zoo Tn<x _ Z]_)Qnﬂ' ]
n=0 -

(en + 1)1

o - 2n+5
Lo g w

where in both equation (11) and equation (12) the terms involving (x - Zl)
are to be consldered &s zero when x = 1.

Equations (11) and (12) are general expressions for the amplitudes
or displacements of a point x of the elastic axls of & uniform wing
vibrating in bending and torsion under the conditioms of flutbter with an
arbitrarlily placed concentrated welght. When the welght is concentrated
at the wing tip the equations correspond to those obtained by Goland
except for a difference In root conditions. When the welght is con-
centrated at the root (or if the mass of the weight is reduced to zero)
the equations reduce to those for a uniform cantilever wing. These
equations mey eppear rether formidable in their present form; however,
only the first few terms of sach summation seem necessary for most cases.

In the derivation of the flutter determinent in appendix B it is
shown that since terms involving (x - 1) drop out of both equation (11)
and equation (12) at x = 17, the values of y(7;) end 6(i;) can be
obtained fram the terms not involving (x - Z]). Then, by making use of
conditions (c) and (4) egein, linear expression in Yp, Y3, and 6, can
be substituted for the bracketed expressions

[::Y'“.(Zl - 0) - 3" (u 03]
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For ng2 3,
Tp = =8Tp.y + ofp.p + (ad - BY)Tn-3 (8)
When the series e ion of 1/g(s), ua'bion (g) is substituted
into equations (5) and the transforms y s) end &(8) became sums of
Infinite series with 'berms of two distinct types; that ig, berms of types
A
g
and
Be °%0
ey

where m 1s a positive Integer.

The inverse Laplace trensform of Bim (see pair no. 3, p. 255, of

{Bm}. e (9)

IBes

8

reference 9) for x>0 is

and the inverse lLeplace transform of -(see palr no. 63 s Do 298 R

of reference 9) for x > x5 >0 1is

1B ®%|  B(x - xo)®
Ll.esm}= @-1)7 (10)
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When the expression for 1/q(s) from equation (7). is substituted into
equations (5) and (6) end the inverse transforms is applied, the following
geries expressions of y(x) and 6(x) can be obtained:

© 2n+h n +5
Tnx Thx
y(x) = Y2[ (o + 2)¢ + 3 (Cn + &)1 +Y3 Z (2o + 5) 3

+ g nx2n3 + 6,B Y T“x2n5
(en + 3) ! 1" / (en+5)1
n=0 '

KECSERRORRI b 2

= - 2nt+5
'[7'”(11 -0) - ylll(zl + 0)] {6 ZTnE:n +Z;_;I

n=0

. ) oni3T] o _ .
+ Z To(x - 1) (11)
= (en + 3)! | |

n=
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and.

[
© Tnxanﬂ. Tnxenﬂp 12n+5

9(1) = .elzm - 7Y2 Z—_——(En n }4-)! = 7Y3L (2n +5)£
n=0 n=0 n=0

co o T > 2ni5
T X205 molx - 29)
I e e R R O I
n=0 — n=0

- i Tolx - )™

- Tn(x_- llfn+5 (12)

F ERICET ERLORE bk <

where in both equation (11) and equation (12) the terms involving (x - 11>
are to be considered as zero when X = 17.

Equations (11) and (12) are general expressions for the smplitudes
or dlsplacement of a point x of the elastic axis of a wniform wing
vibrating in bending and torsion under the conditions of flutter with an
arbitrarily placed concentrated weight. When the welght—is concentrated
at the wing tip the equations correspond to those obtained by Goland
except for & difference in root conditions. When the weight is con-
centrated at the root (or if the mass of the weight is reduced to zero)
the equations reduce to those for a uniform cantilever wing. These
equations may appear rather formidable in thelr present formj; however,
only the first few terms of each summation seem necessary for most cases.

In the derivation of—the flutter determinent in appendix B it ia
shown that since terms involving (x - 1) drop out of both equation (11)
and equation (12) at x = 23, the values of y(1;) emd 6(2;) cen be
obtained from the terms not involving (x - 13)» Then, by making use of
conditions (c) and (d) again, linear expression in Yp, Y3, and 67 can
be substlituted for the bracketed expressions

(71 ( - 0) - 7' (12 + 0)]
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and

1 - - a!
[e (2,-0) -0'(23g + o)]
After the substitutions are made, equatlions (11) and (12) will contein
only the three undetermined coefficlents Yo, Y3, and 67 for sny

partlcular wing-welght system of the type under consideration. Observe
that conditions (b) have not yot been used. If these conditiong are
now imposed upon the equations, there is obtalned a system of three
linear homogeneous equations in Yo, Y3, and 63 +that may be written
for reference as

AyYp + ByY3 + C161 = O (13)

where 1 =1, 2, and 3.

The conditlon that a system of equations such as equations (13) have
solutions other than the trilvial solution

Yo =Y¥3 =63 =0

is that the determinant of the coefficlents Aj, Bi, and Ci vanish

(reference 10). This corresponds to the border-line condition between
demped (steble) and umdemped (umsteble) oscillations or to the point at
which flutter occurs. It will be noted that the order of this determi-
nant depends only on the order of the system of differesntial equations.

The actual coefficients corresponding to Ay, By, and C; ave

complex fumctions of the frequency , the reduced flutter speed v/tw,
and certain determinable characterlstics of the wing-welght system. The
true flutter speed is easlly calculated when corresponding values of
and v/hn are known. These quantitles mey therefore be comnsldered as
(the only) variable parameters in the determinant of coefficients and
the problem of finding the true flutter speed 1s reduced to that of
finding corresponding valuss of these parsmeters that causs the determl-
nant, hereinafter called the flutter determinemt, to vanish. If v 18
set equal to zero the alr forces drop out and the resulitling determlnant
glves the coupled modes of vibration of the wing in still air. Om the
other hand,if ® 1is set equal to zero the nonoscillatory or divergence
condition is obtalned.

Several ways of solving the flutter determinant are mentioned in
reference 6. Although more informative methods exist, a graphical method
was adopted for the present work. TFor example, a valus 1s assigned to
one perameter, preferebly v/bw; the flutter determinant is then evaluated
for this value of v/bw and several velues of the other parameter .

The values of the flutter determinant obtained in this mammer are complex
numbers and if the real and imaginary parts of a sufficient number of
determinant values are separately plotted sgainst w, tro point or points
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where the real and imeginery perts are equasl ere cobtained. TIf this
process for other values of v/bm i1s repeated, a locus of determinant
values with equal real and imaginary parts can be plotted against _
both v/bw and . When enough points are determined these plots give
the values of v/bw and o +that cause the determinant to vanish.

An illustration of. the process of solving the flutter determinant
as described 1n the preceding paragraph is given in appendix B which
contains the complete solution of the determinant for one weight position
qf the particular wing-welght system described in the section entitled
Application to a Specific Wing-Weight System. In general, when solving
the Tlutter determinant by the preceding method, 1f the assumed valuss
of v/bw and o are in the neighborhood of their true valuss, only a few

points need be computed to obtain a solution. In the absence of experimental

values of these parameters and in view of the work involved in determining
other peremeters that depend on v/bw, it will be found advisable to use
simplified msthods to obtain approximate values with which to start the
solutlion.

APPLTCATION TO A SPECIFIC WING-WEIGHT SYSTEM

Attentlon 1s now turned to the application of the boundary-value
problem discussed in the foregolng sectlon to a apecific problem. The
wing-welght system that hes been analyzed consists of a particular
uniforn cantlilever wing and weight combination described in reference 5.
The weight was considered as concentrated at dilfferent specified span
positions but always at about 0.41 chord forward of the elastic axis
of the wing. This welght was selected because of 1ts high mass compared
to that of the wing and because of the large eccentricity due to the
distance between 1ts center of gravity and the elastic axis of the wing.
Furthermors, by vaing only the fundsmental. modes, first bending asnd firet
torsion, the Rayleigh type smalysis had falled to glve any reasonable
results for thls particuler wing-welght combinetion. Pertinent data,
based on measured characteristics of the wing as teken from reference 5,
with the umits in- feet and powmds are :

Chorafeet.,..._............._..,_.__..._.. 2/3
'Lengthfee'b-.. o 8 6 8 ® ® 8 e ® ®» ® 8 ® v v s s e ® ll-
Aspect ratio (gecmetric) s o ® o s s s o & s s e s s e s e 6
Taper ratio e o o s o 8 s 8 % s 8 e e s s e 5 8 s e e s s s e 1
AITFoll BOCHION o o o s o o o @ o 6 « o o o o« o o o o o « o« NACA 16-010
Wpomds..-euo.....o.....-.......... 3-]"'8
I pound-second © s 8 0 0 s * s s e 2 s 8 s e s B F s e s 0 & 0 .00080
EIb,pound—:E‘eet‘......-................. 977.08
GJ, PoUnd-Foet® « « ¢ o o o o s 0 s 0 s e s e s R T 480.56
1/k (stendard eir, noweight)................. 32.6
el,feetoo-o-o-ooooooo--noo.o.o.a-- 0-013
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and, based on measured characteristics of the weight, are

W, pounds . a e s e s 6 s s e e ¢ o o 3.182
62 ) feet . . . . . . [ . . . - ) » - . ) . . -0 .2728
TWT’ fOO't-pound.-Second. * e a . . . e O e o @ . . 0 0013625

Calculation of the flutter parameters have been made for the wing
without the weight and for the wing with the weight at seven different

positions. The calculated results are compared with experimsntal results
in figure 1 and in the following table:

Calculated Experimental
1 8o '

1 b v il v
(1a.) | (£8) (cps) v/ (fps) (cps) v/ (fps)
0 | ~---- 25.27 6.29 333 22.1 | T.22 334
11 -0.2728 19.23 8.23 331 174 8.88 324
17 -.2728 28.04 6.93 ko1 806.8 6.81 382
30 -.2728 30.68 8.18 526 (v) (p) (p)
45 -.2728 25.67 745 Lo1 (p) (b) (b)
L6 -.2728 24 .87 7.06 368 21.8 8.06 368
L8 -.2728 23.60 6.07 300 214 7.1 320

8It i1s found in reference 5 that good flutter records for this wing-welght
system were obtalned for several spanwise welght positions between the
root sectlon and a polnt 17 inches fram the root section; but with the
welght at 17 inches from the root sectlon the wing appeared to diverge.
However, the oscillograph records for this case showed two possible flutter
points, one correspanding to & fregquency of 16.3 cps and another corre-
sponding to a frequency of 26.8 cps (only the first of these is recorded
in reference 5). When the welght was moved farther outward from this
point, definite divergence was noted until the welght was at a point
46 inches from the root section. At this point snd from this point to
the tip good flubtter records were obtalned.

bDive:r‘genc:e .

It will be noted in the table that a1l the calculated flubtter
speeds are within 7 percent of the experimentel veluss and the calculated
frequencles and reduced speeds are within 15 percent of the experlimental
values. The calculated flutter speeds are generally slightly higher than
the experimental values for 17 < 17 and slightly lower for 1; > 46.

There is no such consistent trend in the other paramsters.

In figure 1 the ratio of both celculated and experimental flutter
speeds for the wing with a welght to the flutter speed of the wing with-
out a welght ere plotted agalnst span position of the weight. The
important thing to note in examining figure 1 i1s that the shepe of the
theoretical curve follows the shaps of the experimental curve very
closely in the reglons where experimental flutter was obtained. The
horizontal dashed line in figure 1 represents the divergence speed for
the wing as camputed by the method of reference 1l. Although the
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correct divergence speed Tor different weight positions would probably
vary, being somewhat lower with the weight at the tlp than at the root,
owlng to the effect of the presence of the weight on aerodynemic forces,
the agreement of the approximate value with experimental values is
satlsfactory.

General expressions for the deflectlon curves are derived in
appendix B fram which amplitudes and phese angles for curves of deflectlon,
slope, moment, and shear in bending and amplitudes end phase angles for
curves of angular deflection and torque in torsion can be computed. The
phase esngles and amplitudes for the deflection and shear curves in bending
(fig. 2) and the phese angles and amplitudes for the angular displacement
and torque in ‘torsion (fig. 3) have been computed with reference to a
unit tip deflection for the weight position 13 = 17 inches. In figure 4
the amplitudes in deflection and shear in bending from figure 2 are
compared with the deflection and shear curves due to the fundemental
uncoupled bending mode of the wing,and in figure 5 the amplitudes in
angular deflectlon amd torque in torsion fram figure 3 are compared with
the angular deflection eand torque curves due to the fundemental uncoupled
mode in torsion. There is a noteble difference in the shape of +the
amplitude curves computed by the present method and those computed fram
the first normal modes. This discrepancy indicates that several modes
would have to be employed to obtain satisfactory resulte by the Raylelgh

type enalysis.
CONCLUDING REMARKS

The method discussed in this paper is not limited to a uniform
centilever wing with a single weight. By proper attention to the boundary
conditions the theory can quite easily be extended to apply to a umiform
wing cerrying any number of arbitrarily placed welghts, one of which
might be considered as a fuselage and made to yileld the so-called
symetric and antieymmetric types of flutter. Furthermore, for conven-
ience of application, theoretical velues of two-dimensionel ailr forces
have been used. However, since the method does not depend on the
particular form of air forces involved, any known or avallable aero-
dynemic data could be used. In any event, the method 1s tedious and
would, therefore, not be recommended over the Rayleigh type enalysis
when 1t might be known ‘that only the first few normal modes of the
structure are sufficient to give satisfactory results.

For wings that are not uniform the differential eguations for
flutter conditions reduce to ordinary differential equations with
variable coefficients. In this case the solution would, in general, be
much more difficult to obtain. For general cases there would be no
adventage in the operational method of solution although en lterative
process probably might be used to great advantagee



NACA TN No. 1848 17

In conclusion 1t is pointed out that the location of such masses
ag engines, landing gears, and fuel tanks might be used to advantage in
increasing the flutter speed of & given wing. As shown by the particular
Problem anslyzed herein end by other experlences a definite region exists,
pecullar to a given wing, in which masses added forward of the elastic
axis of the wing tend to increase the flutter speed of the wing.

Langley Aeronautical Taboratory
National Advisoty Committee for Asronautics
lengley Field, Va., November 30, 1948
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APPENDIX A

OUTLINE AND EXTENSION OF METHODS OF FLUTTER ANALYSIS
AS PRESENTED IN REFERENCES 3 AND 4
1. Derivation of the Differential Equations That Govern
the Motion of--a Wing at Flubter Speed
Conslder a spenwlse element of incremental length dx at station x

of a wing osclllating in bending and torsion in a free stream of fluld
(see sketch).

ALTELERHELLTRRIRR RN L.

Elastic exis

Wind

- C\/ - Station x
direction \ \E

The displacements Y &and & of an element of the elastic axls are
functions of x end t. In order that this element remain in dynsmic
equilibrium the extermal forces and moments on the element must balance
the 1nertisa forces and moments.

The externsl forces and momsents consist of transverse shearing
forces end torslonal moments, which are trensmitted from one element of
the wing to the next, plus the aerodynsmic 1lift force and pitching
mement and internsl or structural damping. Structural. damping 1s not
taken into consideration in this discussion, although its inclusion
would add no computational difficultles.
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The transverse shearing force acting upward at x 1s

3
= -FT (A1)
P 3% 33x
and that acting downward at (x + dx) is
AN 3y _ oty
N+ & &x = -EG, =5 EI-b-a—l]I (a2)
Similarily the nose-down borslonel moment acting at x 1s
T = GJ %‘i _ (A3)
and at (x + dx) the nose-up torsional mament is
38 d%e
T+5—dx=GJg-+GJax2 (AL)

The two-dimensional aerodynsmic forces acting on an elemerit dx of an
oscillating airfoil have been derilved by Theodorsen (reference 8) and
cen be written as a 1ift force and aerodynamlic moment acting about the
elastic axis of the wing, respectively, as

w2l'.yY+chy'g%+m2L9®+mIg"%b@'dx (a5)
de=‘<w yy+%'%+m2bfge+me'§>ax (46)

The inertia force of the elemsnt dx cen be written

%Y , 329
< 32 Y (1)

and the inertia moment as

<a@+me aar (28)

at at
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Dlagrams of the forces and moments acting on an element of wing of
length dx at statilon x are as follows:

L dx T
N] M dx
T
T g-d::
Pe B2Y
I= + mey

Imposing the conditions of-dynemic equilibrium of the element at x by
equating inertla forces to extermnal forces and Inertie moments to external
mements gives the two differentlal equations that govern the motion of

the wing:

2 -
m§-é+msl-g—£=-EI-b$+a.>2LyY+wLy'%%+aﬁLee+wLe'%%

e (A9)

5 %6 Py a2e ' Y ' gg

ISE rmeLss - +032MyY+aMy =+ oPMge + attp' §F

2. Boundary Condltions for a Uniform Cantlilever Wing Carrying
an Arbitrarily Placed Welght at Flutter Speed

The boundary conditions that must be imposed upon equatlons (A9)
for a uniform cantilever wing are

(1)  x(0,t) =0

(2) EI-DB—x Y{x,t)Lo =0
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(3) e(o,t) =0

|
o

(&) EIbEi—e ¥(x, ti]

x=1

3
(5) EI-D[-B—JS Y(x,'b‘;' o 0

6) GJEj—z o(x,4) _ o

These are the usual conditions that must be imvosed on & vibrating canti-
lever beem. Condition (1) 1s the condition that the end at x =0 1is
supported (either hinged or built in). Conditions (2) and (3) imply
that this end is fixed or bullt in. Conditions (&), (5), and (6) imply,
respectively, that there is no bending moment, trensverse shearing force,
or torsional moment acting et the tip x = 1.

If there 1s an arbltrarily placed welght on the wing, other corndi-
tions must be imposed that will determine the effect of the welight upon
the motion of the wing. If the welght 1s consldered as concentrated at
some point on the chord line at station x = 17, 1t will create discon-
tinulties in both transverse shear and torsional moment. The magnitude
of these discontinuilties are known functlons of the mass of the welght,
the location of the welght, and the acceleratlon of the wing. The
remaining conditlions required to complete the boundary-value problem for
the general motlon of the weighted wilng are, therefors,

3 33
n EL, E’—- Y(x,ti! -[—.. Y(x,t)J
ox x=(17-0) dx3 x=(17+0)

W,

L o -l :!
g [a@ (x,8) + 2 5 €x,t) 1y

(8) GJ[% @(x;tﬂk(zro)' ] [563_: e(x’t):,x=(zl+0)

o= E 2P
e S5 v vR L g(x,tLZI
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For the pu:c"pose of flutter analysie it 1s assumed that the motlons
in both bending and torsion are harmonic and that the freguencies in
bending and torsion are equal. Therefore, only the particular form that
the solution to the bowundery-value problem has when these conditlions
obtain need be sought. These conditions imply that 'Y.'(x, t) end ©O(x,t)
are of the forms .

Y(x,t) = y(x)ei‘”t (
A10)
e(x,t) = G(x)eiwt

where, on the right-hand side of equations (A_'LO), y and 6 are now
complex amplitude fimctions of-the spean coordinate X from which the
shape and phase relation of the wing at any fixed tim.e during flutter
can be obteined.

If the velues of Y and © from equations (A10) are substituted
into both differentlal equations (A9) and into the boundery conditions,
the problem is greatly simplified. The differential equations becoms
independent of t &nd appear as ordinary differential equations with
constant coefficlents. After meking the substitubtion and rearranging
texrms, the equations of motion can be written as

——

:EI)J (m+1.y+ ')@y-(m1+1.9+119')w26=0

’ (A11)
GJ——+(m.el+My :LMy)wey+<I+M9+iMe)a)29—O
or more simply as
) -
Sf-cg-p0=0
dx
f (x12)
ie.+—7y+59=0
ax2 ' -/
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The boundary conditlons also becoms independent of + and can be written
as follows:

(GR)] y(0) =0
(2") §'(0) =0
(3') e(0) =¢
) sy =o0
(" §'''@1) =0
(6 e'(z) =0

(7" EIbl:Y'”(Zl -0) -y'""" (1 + 0)] = - ig‘-’aﬁ y(11) + 926(21-)]

8" GJE'(ZJ. -0) -6"(11 + 0)] =H§w2[ezy(7-1) + K229(Zl)]

3. Solution of Boundary-Valus Problems in Ordinary Differentlal
Equations by Operetional Methods and Application to a Beam
Carrying an Arbitrarily Placed Welght

The boundary-value problem given by equations (Al12) and conditions (1')

to (8') can be solved by straightforward methods of solving ordinary
differentlal equations with constant coefficlents. The operatlional

method, however, is a much easler and shorter approach, particularly in
view of the dlscontinulties in shear and torgqus.

Briefly, the solution of a bowndary-value problem by operatlanal
mothods consists of applying the Iaplace transform to the differentiasl
equations, the Inltial conditlons (root conditions when applied to beem
problems) » and certain forms of other boundary comditlionsj of solving
the resulting system for the transform of séch dependent varieblej; and
then by epplying the inversion Integral to the results. The remalning
boundary conditlons are then used to set up relations among whatever
mndetermined parameters that might remsin.

In the case of flutter analysls a complete solutlon to the equatlons
i1s not neseded but only the conditions under which an unsteble equilibrium
mey exlst. The relations that canm be set up between the umdstermined
paremeters correspond preclsely to this condition. In other words these
relatlions appear as a system of homogensous equaetions and the satisfaction
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of the condition that thils system of equations have e camon solution
other than the trivial solutlion corresponds to the border-line condltion
separating the @Gamped and vmdemped osclllatlons of the wing.

The Laplace transform of £(x) is

L‘&'(x)} = j; " guex £(x) dx = £(g) (a13)

where 8 may be real -or complex end =x >0. The gufficlient conditions
that thls infinite integrel exist are that f£(x) have no infinite discon-
tinuities for x >0 and that f£(x) be of exponentisl order as X —> ® .
(8ee reference 9.) In other words finilte discontinuities such as those
appearing in the foregoing problem do not invalldate the operational
approach.

The Laplace transform of the nth derivative of a continuous
functlon with continuous derivatives, for which the function and all its

derivatives are of exponential order, can be obtained directly from
equation (Al3) es

L{fn(x)} = &%F(s) - 8% 12(0) - 822 (0) - + .« . - £2°1(0) (A1k)

The Iaplace trensform is linear in the same sense as differentiatiom
or integration. That is, if- aj and by are constants

L{anfn(x) + oo P (x) + 00 o+ f(x) + b)) + e . . F boe(z)}

= a.nL{fn(x)} + 8 qL fn-l(x)} e oot aoL{f(x)}
sut {0} + v x pfe(a) (a15)

Thus the Iaplace transform of a linesr differential equation with constant
coefficients 18 generally a sum of expressions similar to eguation (a1k).
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In equation (Alhk) the quantities £(0), £'(0), . . . , £271(0)
are ‘the boundary conditions at the origin of the dependent varisble
(wing root) that corresponds to canstants of Integration. When these
quantlities are glven they are put directly into the transformed equation.
When the quantities are not glven they correspond to what has been
called wndetermined parameters in the Preceding paragraphs and must
later be determined in terms of other boundery conditions.

Finite discontinuities in a functlion or any of its derivatives
are taken into accoumt by proper attention to the limiting values that
the function or its derivatives have on the two sides of the disconti-
nulty. In perticuler, if a fimction end its first n derivatives are
of exponential order, 1if ‘the first (n - 2) derivetives are continuous,
if the (n - 1)8% derivative has a finite discontinulty at x,, and if
the nth derivative is comtinuous except for a singular point at x,,
(see sketch)

-

# 7 (x)
£2(x)
and i
£o-1(x) '
71 x)
,\
x5 :

the Laplace transform of the nth derivative has the form

Lit(x) = 695 (s) - &7 Le(0) - . .
- 5t2(0) - 78X Yz + 0) - B2 U(xo - 0) | (m6)

vhere f(x, + 0) is the value of f£(x) as x approaches X5 from the
right end f(xo - 0) 1s the valus of f(x) as x approaches X, from
the lefte In other words the terms in the brackets express the magnitude
of the discomtinuity in £ 1(x) at X, 1n the (n - 1)5Y derivative

at Xae
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An examinstion of the boundary-value problem, equation (a12) s Bhows
that the transform will be given by a sum of expresslons preclsely of
the form of equation (Al6).

In order to interpret the transformed function f(s) in texrms of
the originel function f(x), use may be made of the inversion integral
dlscuseed in bext books on operational calculusj or one may refer
dlrectly to tables of transform.

As a gimple exsmple ‘the operationsl method 1s applied to a cantl-
lever beam carrying an asrbltrarily placed welght and assumed to be
vibrating in a vacuum 1n bending only.

The boundary-value problem for thils case can be written

Y
EIb?j = mfy (A27)
(a) y(0)=y'(0) =0 R
(v) F' ) =3''"(2) =0 ¢ (a18)

(c) EI-bE"'(Zl -0) - y'*" (L + oZ[=-f—“;D—2y(11)/

where the symbols have the seme meening ss in equation (Al2).

If the root conditions (a) and the boundary corndition (c) are used,
the transformed problem solved for F(s) gives

s¥p Y3 Wu“? -‘7(11) o-511

y(s)=s)+-a,)++sh'-a,h+GEI'bs)‘|'-a.h (A19)

P
where, for brevity, ¥, = y''(0), ¥3 = y'''(0), and o = L
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The inverse transform of equation (A19) is (ses pair nos. 31
and 32, p. 296, and relation 12, p. 294, of reference 9)

y(x) = :%2- cosh ax - cos ozx>+ %/sinh ax - sin a:x:)
WP -
+ 2c,3gEI-by( 71) [sinh ax - 27) - sin ofx - zl):] (a20)

or

y(x) =Z—§2-coshax- cos ca:>+£3—sinhax- sinax)

203
2
W, Y,
+ id ie (cosh aly - cos a.21>
2a,3gEI-b 2¢

Y
+ —3§<sinh aly - sin azjj Einh alx - 77)
2o

- sin a(x - ZJ_£| - . (a21)

where the last bracket 1s zero when x - 17 < 0.

Imposing boundary conditions (b) gives two homogemeous equations
in Yo end Y3. Each value of a that will cause the determinant of

the coeffilcients of Yo and I3 to venlsh corresponds to a mode of
vibration.

This result has been applied to the wing and weight discussed in
the text of thls paper with the weight located 17 inches from the root.
The deflsctlon and shear curves due to the f£irst wmcoupled modes in
bending only have been computed and are plotied in figure 6. Corre-
sponding results have been computed by a 20-station process of iteration
discussed in reference 12 and plotted in the sames figure.
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k. Representation of the Inverse Transform of the Bowmdary-
Velus Problem, Equation (A12), by a Power Series

The transform of both y(x) and 6(x) of equation (A12) are of the
form

Pl(s) PQ(B) -
ORI O R (a22)

f(s) =

vhere Pp(s) and Po(s) are polyncmlals both of lower degree than q(s).
Neither Pi(s) or Po(s) have common factors with_ g(s) where q{s) is
of the sgpecific form

a(s) = 0 + agh + b2 + ¢ = (sz - R1)<52 - 132)(52 - R3) (A23)

wvhere the coefficlents =a, b, and ¢ and the roote squared Ry, Ry,
and R3 are complex. The Inverse function assoclated with such a
transform gives f£(x) in terms of circular and hyperbolic fimctions

of x\| Ri, but with the resulte in this form the process of solving the
flutter determinant becomes very cumbersome.

By meking use of the propertles of symmetric fimctions, Goland and
Luke (reference 4) outlined a simple method of obtalning serles expansions
for the transforms of equatioms (A12) thet does mot involve the
meticulous task of finding the roots of q(s)« The inversions of these
expansions give y(x) and 6(x) in the form of convergent series.

For the develomment of these serles it 1s first necessery to con~
sider q(s) as a cubic in &°; namely,

3 3
g(s) = E:.L(Ba - 115_) = 56ﬁ< - -l;—i> (a2h)
By meking use of the binomial theorem, 1/q(s) can be written as

3 Ry R4S, RyS
1 1 1 = 1
—-(—qu =z£‘€+§+;r+s?—+..-> (A25)
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Equation (A25) is independent of any interchange of the paramesters Ri, Rp,
and R3 and thus satisfles the description of a symmetric fumction in
these paramsters. (For s discussion of symmetric functions see refer-
ence 10 or any text on higher algebra or theory of equatioms.) If the
indicated multiplicatlion in equation (A25) is carried out, the results

can be written

1 Ty  To Tn
T + - + e— e e A26
a(s) ~ 3 g2 BE gen ) (426)

where the general term T, represents the sum of all possible symmetric
polyncamials In Ry, Rp, and R3 which are of degree n and with all
coefflcients unity. By making use of Newton's identlty relative to
symmetric polyncmials, that is

Ty = =aTp.y = bTpp - cTpo3 (A27)

where the value of any Ty, is to be disregarded when n - J <0,
every Tn can be written iﬂ terms of the coefficlents a, b, and c¢ of
equation (A23); for exsmple,

TO =1 M
Tl = =8
= a2 - L
T =a"-D / (p28)

-a.3 + 28b - ¢

w'—:l
|

-/

With the aild of equation (A26) and equations (9) and (10) of the
text the inverse trensfarm of equation (A22) or of y(=) and 6(s) can
therefore be written as a sun of terms of the type given in equations (9)
.and (10) where the T,'s enter as coefficients in the numerator and are
easlly evaluated in terms of the coefficlents of a known cu'bic equation.
In the application to flutber enalysis only the first few Tn 8 are
usually necessary because the resulting series is generaslly found to be
highly convergent.
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APPENDIX B

DERIVATION OF THE FLUTTER DETERMINANT AND SAMPLE CATCUTATIONS

Introduction

In this section the flutter determinent is formally derived and
the method described in the text for solving the deberminent is
111 ustrated with sample calculations for a specific examplee. Also final
expressions for the deflection curves are given from which amplitude and
phase angle curves of deflection, shear, and torque are calculated for
a specific case. The calculated amplitudes are compered with corre-
gponding curves computed from the fundamentel uncoupled modes In bending
and torsion.

Derivation of the Flutter Determinant

In equations (11) and (12) of the text it 1s first mecessary to
evaluete the expressions

EY”'(Zl -0) - ytii(yy + Oﬂ
and
E'(zl -0) -6'(1 + oﬂ

in terms of Yp, and 61. Since terms involving (x - 13) drop out
of both eguation (El) and equation (12) for x = 17, the values of y(17)
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and 9(?, ) can be obtainsd directly from these equations. The values
of y(11 -)L end 6(1;) substituted into conditions (c) emd (4) of the text

glve the desired relations; namely,

- E—I‘ﬁ—iE(h) + e.29(11)]
4

T L 8{ [ 927)2'(5—;22;)—1-

Tp11204+2 Tp1720+5
+z 22n+25'+Y3,:(5'627)§ 2n+5.
n=0

ylll(zl - O) - ylll(zl + o)

®_m,1;°0%3
" Z=o (en + 35]‘
ai

+ 03] (8 - eg0) Z%%lﬁrr

2 1 920+l
T e Z Tn(z nl+ 1)1 } (81)
n=0
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W
6'(11 - 0) - 8" (11 + 0)=EJ“%2‘E27(7'1) + Po(1)]
1 onth
- B e[l - ) 5 By
N Tn112n+2
2 (en + 2)1
n=0
2 Ty 1322
13 (et - e ”Z Gt

oo l:[.11_17‘:|.2n+3

* GEZ-OZEn+ 35.'
n

2n*5
+ o |( [925 ) &
oo 7-2ntl
* KEE; Tnia nl+ ls.' } (2)

Substituting equations (Bl) and (B2) into equations (11) and (12)
glves

7(x) = by (0¥ + hp(x)¥3 + h3(x)6; (B3)

6(x) = g1(x)Tp + e(x)Y3 + g3(x)61 (B4)
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where
7202 2T T2, 20t
hj (x) =n '(_y'rn 5 Gor )T © -e27) i gn ¥
Tnzlgn'@:l (x _ 21)2n+5 oo Tn(x - Zl)2n+3:|
Tn +2)1 ; (2n + 5)1 ; (Gn+73)1

2n-12] Ty (x - 27)25

+ 62 (2n +2)7 (2n + 5)1

=) %Jgn+5 Jgn+3 fobe o T 1 2nt5
ho(x) = ng Z(Qn o L Ea } 627)11 (?nl" 5)°

T zlzn 3 JI - Zl)2n+5 © Tn(x - zl)2n+3
2n+3 g (2n + 5) ¢ ; (@n + 3):
2n+5
- GJg [:628 - Kegﬂzm

2n 3 - en+5
+ e?_z 211 Tn + 3¢ :| ZTnEan +Z]5))3

33
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T, 205 LW
h3(x) = BZTL_,_ 5)T BT g[ﬁ - epa) gm
1720+1 T(x - 1,)22%5 | Tn(x - 17)28%3
+62 2n+l (2n + 5) +IZ=C; (2n + 3}«
2n+5
B e - P ZW

(20t o (x - 7-)205
r5f ) 2n+1:|Zn((2n+gl

L III x2n+1{- En+1l~
Sl(x) = =7 (2n T I7 "‘ GJg \:925 = 2n +
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and
cn Tn1-2n+l 2n+5 o ) Tnly’ 2nt+5
83(x)—1_;0m ;r+5' %B-Kea;m

+ K2 S TnZl 2o+l T\X = 21 2nt> _ zft:Tn(x - Zl)2n+l
K 2n + 1). (en + 5) s L (2n + 1)«
WPy Tp1120+2
EIg[(B - %“)Z(zn+5)
i Tnz 2n+l iTn(x - Zl)2n+5
- Tn + 1)? (2n + 5)
By imposing conditions (b) of the text

71 =) =011 =0

upon equations (B3) and (B4Y), three equations are obtained (written in the
text as equation (13)):

AjYp + ByY3 + C363 =

vhere 1 =1, 2, and 3 and

= hy ' (1) By =hy''(2) Cq
—hl”'(l) 32=h2”'(1') 02

Ag = g1'(2) By = g '(1) C3

>
l_l
1

53" ()

hslll(z)

S
I

83'(2)
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Imposing the conditlon that the equations (13) have a solution
other than the triviel solution Yp = Y3 =61 = 0 resulte in the flutter

determinant T

A (B5)

1
S
N

L

(@)

Semple Calculation of Flutter Speed
end Deflection Curves

A method of solving the flutter determinant given in the text is
1llvstrated here by the solution of the determinant for the wing-welght
combination discussed in the text when the spanwlse locatlon of the

wolght is 17 inches from the root. The valuss of —zL =}—J; that ave

chosen are in the neignborhood of the experimental value and have

available tebulated values of Theodorsen's function c(k) = F + 1G.
Table I shows the asctual computations regquired to evaluate the

coefficients Aj, By, and C; for %’E = 7.1429 (k = 0.14) end two

values of -2% =f (f =25 cps end f =28 cps). From columns @, ,
and @ the determinent for f =25 cps is

(14.9200 - 2.85741) (12.8320 - 2.03151) -(7.3286 - 0.600211)
(11.8000 ~ 3.66951) (10.2970 - 2.85661) ~(5.4711 - 0.932331)
(0.17030 - 0.661341) =(0.09077 + 0.593411) ~-(0.41138 - 0.288641)

A

oxr

A = 1.0326 - 0.69481
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Similarly, for f = 28 cps,

(18.6380 - 3.81151) (15.0860 - 2.63991) =-(9.1238 - 0.854331)
A =| (15.5930 - 5.09351) (13.0080 - 3.79461)  ~(7.1158 - 1.39881)
-(0.04177 + 0.870981) -(0.23526 + 0.759481) -(0.51403 - 0.370171)
or
A = -0.4029 - 0.03121

The debterminant was evaluated in this manner for the sames value
of v/'bw and several other values of f. The process was then repeated

for % = 6.25 and several values of f and for % = 5.00 and several
valuss of f. The real and imaginary parts of the evaluated determinant
for sach valus of v/"ba) end the corresponding values of f are separately
plotted in figure 7. The ordinates of the intersectioms of the different
pvairs of curves of real and imaglnaery parts were scaled in figure T and
plotted as Ay against both v/bw and f in figure 8. The zero
ordinates of these curves glve the value of v/'bm -.;-—D =6 .93) and the

values of f£(f = 28.0k cpe) for which the determinsnt vanishes. Fram
these values the flutter speed is readily calculated to be !

v = (bw)(6.93) = (2nbf) (6.93) = 12")(28501‘) (6:93) _ 107 £ps

As pointed out in eppendix A the deflection curves at any specified
time are glven by equations (A10)

T(x,t) = y(x)el®t = y(x)(cos wt + 1 sin wt)

o(x,t) = 6(x)e®t = 9(x)(cos wt + 1 sin wt)_

‘where final forms of y(x) end 6(x) are glven by equations (B3) and (Bl)
and vwhere, at least, the relative values of the undetermined coeffi-
cients Yo, Y3, and 61 in equations (B3) and (BY) must be known. If
the set of vaiues of v/bw and « that satiefy the flutter determinant
is used to determine the coefficlents A4, By, and C3 1n equations (13),
there 1s obitalned & sysbem of three homogensous equations in the three
winowns Yp, Y3, and 67 that have solutions other then the trivial
solutlons Y2 = Y3 = 91 = 0. If these equations are each dlvided

through by any one of the unknowns, say Yo, there 1s obtained a
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congistent system of three equations in the two ratios Yi/¥p and 61/% .

Any two of the three equations can therefure be solved for these ratios.
Consequently, equations (B3) and (BY) can be written with onme undetermined
parsmeter that appears as a factor In each equation. Furthermore , 8ince
the coefficients Aj, By, and Cj are camplex numbers the ratios ¥j/¥o

and 63/Yp are complex numbers snd equations (B3) and (BY4) comtain
complex coefficlents. The real and imaginary parts of these equations
can be separated and the equations written

y(x) = YgEfl(x) + iyg(le
o(x) = Yp[6p(x) + 105(x)]

If these relations are substituted into equations (A10) s

(86)

. . ==
Tt
¥(x,t) = Ypqy;(x)cos ot - yo(x)ein wt + iBrQ(x)cos wt + yq(x)sin wz}

¢ (B7)
e(x,t) = ‘YQJEQ(x)cos wt - 63(x)sin wt + 1E3(x)cos wt + 65(x)sin a)g_:b

or
A e e o T
Y(x,t) = 1o wl}l(xj + Be(xf [cos(wt + @q) + 1 sinfot + cpl):l
_ B _ > (B8)
a(x,t) = YQ\J [92(35) 2 4 [63(in2 E:os(wt + Qo) + 1 sin(ot + CPE):L
where -
-1 To(x)
91 = ten™t fy%(;y
and
P = tan™t %2%;;‘
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and where @ - @p represents the difference in phase angle between
bending motion end torsion motions at x.

The real parts of equations (B8) are interpreted to mean the motions
in bending end torsion teken in a posltive sense. The imaginary parts
can then be Interpreted as representing these seme motions with a phase
shift of =/2 radiems.
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Figure l.— Comparison of calculated and eXxperimental flutter speeds for
a particular wing—weight system.



NACA TN No. 1848 ’ ' 45

1.2 —— 30
...
] o
el 20 <
[
y 1T -
AA 11tud ‘ :
.4 Vi mp 1?“ ® Phase angle 10 E
/ &
o //// _—T 1 Shear ~~1
§ o% ; 10
(=)
[=}
|
'5 ]
i
_4 ,
|
-
|
-.8 T
|
1 ]
-1.2g 10 20 30 Lo 50

Distance along span, in,

Figure 2.— Plot of amplitude and phase angle of displacement and shear
curve in bending at flutter for 1; = 17 inches (amplitude and shear
referred to unit amplitude at tip In bending).
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referred to unit amplitude at tip in bending).
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In bending for 117 = 17 inches (amplitude and shear referred to unit

emplitude at the tip in bending).
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